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CHAPTER 26

Computational Aspects
of Prediction Markets

David M. Pennock and Rahul Sami

Abstract

Prediction markets (also known as information markets) are markets established to aggregate knowl-
edge and opinions about the likelihood of future events. This chapter is intended to give an overview
of the current research on computational aspects of these markets. We begin with a brief survey of
prediction market research, and then give a more detailed description of models and results in three
areas: the computational complexity of operating markets for combinatorial events; the design of
automated market makers; and the analysis of the computational power and speed of a market as an
aggregation tool. We conclude with a discussion of open problems and directions for future research.

26.1 Introduction: What Is a Prediction Market?

Consider the following mechanism design problem called the information aggrega-
tion problem. Suppose that an individual (“the aggregator”) would like to obtain a
prediction about an uncertain variable, say the global average temperature in 2020.
A number of individuals (“the informants”) each hold different and nonindependent
sets of information bearing on the outcome of the variable. The goal is to design a
mechanism that extracts the relevant information from the informants, aggregates the
information appropriately, and provides a collective prediction or forecast. The forecast
should ideally be equivalent to the omniscient forecast that has direct access to all the
information available to all informants.

A prediction market1 is one mechanism designed to solve the information aggre-
gation problem. The aggregator creates a financial security whose payoff is tied to
the outcome of the variable. For example, he creates a security that pays $x dollars
if the actual global average temperature in 2020 equals x. The aggregator invites the
informants to trade the security however they please. For example, global warming
proponents should be willing to buy the security at or above prices equal to today’s

1 Prediction markets are also often referred to as information markets, (Arrow-Debreu) securities markets,
contingent claims, contingent contracts, event markets, event futures, event derivatives, and idea futures.
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global average temperature, and global warming skeptics should be willing to sell at
those prices.2 The aggregator can view the trading price of the security as a collective
forecast for the expected value of the uncertain variable. In fact, as we shall see in Sec-
tion 26.2.2.3, in some simplified theoretical settings one can prove that the trading price
converges to a rational expectations equilibrium that mimics the omniscient forecast.

More importantly, in a broad and diverse number of real-world settings in the lab-
oratory, in the field, and in practice, prediction markets seem to yield equal or better
forecasts than other methods of information aggregation. Researchers have proposed
using prediction markets to help scientists, policymakers, decision makers, the gov-
ernment, and the military. Several companies – from established brands like Google,
Microsoft, and Yahoo! to startups like CrowdIQ, InklingMarkets, and NewsFutures –
are experimenting with prediction market services in the private sector. The growth of
the field is reflected and fueled by a wave of popular press articles and books on the
topic, most prominently Surowiecki’s “The Wisdom of Crowds.”

In this chapter, we focus on algorithmic challenges and constraints associated with
implementing a prediction market mechanism. We discuss three areas in which com-
putational constraints are important.

� Effective prediction markets often need to handle combinations of different events or
contingent events. However, the number of contingent events grows exponentially in
the number of base events. In this situation, the basic functions of listing securities and
clearing markets can become computationally intractable. In Section 26.3, we present
results on the computational complexity of operating combinatorial markets.

� To increase trading volume, a prediction market operator often acts as a market maker
who is always ready to trade. However, To limit the exposure of the market maker, it
is essential that the market maker adjusts its bid and ask prices after every trade. In
Section 26.4, we describe two new designs to automate the price updating process in a
way that limits exposure while encouraging informed traders to trade.

� When different traders have complementary information about the value of a security, the
market itself ideally performs a computational function: The final trading price should
reflect an aggregate of all the traders’ initial information. In Section 26.5, we present a
simple market model and analyze its computational properties. We derive positive and
negative results on when the market will converge to the ideal price, as well as bounds
on a measure of convergence time.

In Section 26.2, we set up the problem formally and survey the academic literature
on prediction markets.

26.2 Background

26.2.1 Setup and Notation

In this section we formally pose the aggregation problem that prediction markets are
designed to address. We begin by introducing a fairly standard model of uncertainty
and distributed information.

2 For simplicity, we ignore the time value of money.
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Definition 26.1 Partition model of knowledge: There is a set � of possible
states of the world. At any point of time, the world is in exactly one state ω ∈ �,
but agents do not necessarily know the true state of the world. However, each
agent i may have partial information about the true state. Agent i’s information
is represented by a partition πi of �; that is, πi is a collection {πi1, πi2, . . . , πik}
of subsets of � such that the different subsets are disjoint and the union of all
subsets is �. The semantic interpretation is that i can distinguish two states in
different subsets πi1, πi2 of her partition πi , but cannot distinguish between two
states in the same subset of the partition. In particular, agent i knows in which
subset of her partition the true state of the world lies, but does not know which
member of that subset is the true state. Given n agents 1, 2, . . . , n, their combined
information π̂ is the coarsest common refinement of the partitions π1, π2, . . . , πn.

The partition model is often augmented with the assumption that there is a common
prior probability distribution P ∈ �(�), which captures the probability that all agents
assign to different states before receiving any information. Once agents obtain their
partial information, their posterior beliefs follow by conditioning on their information
– that is, by restricting prior to the subset of their partition in which the true state
lies.

A forecast is an estimate of the expected value of some function f (ω), where f

is a commonly known (deterministic or stochastic) function of the state of the world.
A special type of function f : � → {0, 1} called an event equals one for a particular
subset of � and zero everywhere else. A joint forecast is a joint probability distribution
over the values of a number of functions f1(ω), f2(ω), . . ..

X

X

X

Figure 26.1. Partition model of knowledge. In this example, the set � of states of the world
contains eight mutually exclusive and exhaustive states: ω1, ω2, . . . , ω8. Subsets of states like
X 1, X 2, and X 3 are called events. Suppose that agent i can distinguish between states in X i and
states not in X i , but cannot further distinguish among states. For example, agent 1’s partition π1
is {{ω1, ω2, ω3, ω4}, {ω5, ω6, ω7, ω8}}. In this simple example, the coarsest common refinement
of the three agents’ partitions is π̂ = �, meaning that the agents’ combined information is
always sufficient to precisely identify the true state. Often, we may consider the events X i as
the most basic elements of the model, with the ωi being the implied product space of these
base event outcomes. For example, ω4 in the figure is explicitly indexed as ωX 1 X̄ 2 X 3 : the future
state where X 1 is true, X 2 is false, and X 3 is true.
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On its own, an agent’s best forecast uses its posterior distribution over �, but ignores
information that might be obtained via interaction with other agents. The omniscient
forecast uses the posterior distribution conditioned on all information available to all
agents, or P restricted to the subset of π̂ in which the true state lies.

In reality, each agent’s information is private knowledge that is not directly accessible
to any one entity. Thus information aggregation is a problem of mechanism design (see
Chapter 9). The goal is to produce a mechanism that incentivizes the agents to reveal
their information such that, in equilibrium, the mechanism produces a forecast as close
as possible to the omniscient forecast.

A prediction market is one type of information aggregation mechanism. The market
contains financial securities whose payoffs are functions of the state of the world. In
the simplest case, the market contains a security paying off f (ω) dollars in state ω.
Thus agents are incented through the prospect of financial gain to reveal informa-
tion bearing on the expected value of f (ω), and the equilibrium price reached by a
number of interacting agents can be viewed as a collective forecast. As we shall see in
Section 26.5, even when a single forecast is sought, multiple securities might be required
to ensure convergence to equilibrium. In Section 26.3 we explore the computationally
challenging case of setting up a market to yield a joint forecast.

26.2.2 Survey of the Field

The field of prediction markets is largely an empirical science, and much of the
academic literature focuses on laboratory and field experiments testing the accuracy of
predictions in a variety of settings. However, a prediction market is operationally no
different than a standard financial market, so a large amount of economic and financial
theory applies.

26.2.2.1 What and How: Instruments and Mechanisms

A prediction market can be designed to elicit a forecast for any type of random variable
or set of variables. For example, the variable can be binary (“will a Republican win
the next US Presidential election?”), discrete (“who will win the next US Presidential
election? A Democrat, a Republican, or someone else?”), continuous (“what will the
global average temperature be in 2020?”), or a joint space of any combination of the
above.

Beyond “what” is being traded, there are a variety of different mechanisms specify-
ing “how” the securities are traded, including a call market auction, continuous double
auction, continuous double auction with market maker, bookmaker, parimutuel market,
and combinatorial versions of the above, all of which have some empirical record of
success.

In a call market auction, all bids are collected over time, then processed together
in large batches. The clearing price can be the mth lowest price, the m + 1st lowest
price, or somewhere in between, where m is the number of sellers. A continuous
double auction is a continuous version of a call market, where as soon as any trade
is acceptable to any two bidders, the trade is immediately executed, usually at the bid
price of the least recent bidder. A market maker or bookmaker is a price maker who is
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nearly always willing to accept both buy and sell orders at some stated (but changing)
prices. In a parimutuel market, players compete in a wagering game to earn as large a
portion as possible of the total amount of money wagered by all players.

26.2.2.2 Examples and Evaluations

A prediction market cannot surface information that does not exist or is unknown,
so the accuracy of a prediction market can only be evaluated in comparison to other
information aggregation or forecasting methods. The central empirical question is
whether a prediction market aggregates or summarizes information more accurately
than other methods.

One of the most cited and most successful prediction markets is the Iowa Electronic
Market (IEM). Since 1988, IEM has been operating real-money prediction markets,
mostly on the outcomes of political elections. Empirically, on average the market’s
predictions are more accurate and less volatile than political opinion polls, especially
in large US elections. The markets react to new information quickly, sometimes within
minutes, and often before the new information becomes widespread. The markets are
accurate despite documented evidence that individual traders are often biased and
irrational and make mistakes. Several IEM publications support a theory that accuracy
derives not from average traders, but from marginal traders. Marginal traders are more
active, less biased, more successful, and price makers rather than price takers. As long
as a few good marginal traders exist, the market as a whole remains accurate despite
the poor traders.

Options, futures, and other financial derivatives are contracts whose payoff is a
function of some underlying uncertain variable. For example, the payoff of a stock
option with strike price k is max[0, s − k], where s is the price of the corresponding
stock at some future date. Sports betting markets can also be viewed and analyzed as
prediction markets. Several empirical studies verify that derivative prices and sports
betting odds constitute accurate forecasts for their underlying variables.

Even play-money markets show a surprising ability to aggregate information. Studies
of market games like the Hollywood Stock Exchange, NewsFutures, and the Foresight
Exchange report accuracies equal to or better than expert opinions and, remarkably,
sometimes on par with equivalent real-money prediction markets.

Experimental economists have tested the aggregation properties of prediction mar-
kets in laboratory settings. The experimenter sets up the forecasting problem and
carefully controls the information each participant receives. A number of experimental
designs reveal when market aggregation seems to work and when it does not. Generally,
given enough securities and enough practice, traders in the laboratory often converge to
prices close to the omniscient forecasts. Researchers have devised and tested methods
for achieving accurate results across as many forecast variables as possible with as few
participants as possible.

Economists have also run field tests of markets used to forecast quantities of interest
to an organization. For example, a market was tested at Hewlett Packard to project
the company’s sales volume for particular products. Generally, the market predictions
were superior to the official HP forecasts. Other companies, including Microsoft and
Google, are now running similar internal prediction markets.
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26.2.2.3 Theoretical Underpinnings

There is a fundamental difference between a market for a financial security and a market
for a consumer product: the security has no direct consumption value to potential
buyers. Buyers want to buy the security only because they believe they can later resell
it or cash it out for a higher price. This simple observation invalidates the classical
model of demand, in which each trader has a fixed demand curve that describes the
quantity demanded at each price. The market provides information about other traders’
knowledge and beliefs, which may lead a trader to change her beliefs about the future
value of the security. In this manner, the market prices can lead to changes in the traders’
demand curves! This led to the development of a new theory, the theory of rational
expectations, that seeks to understand this latter kind of market. The cornerstone of this
theory is a new equilibrium concept, the rational expectations equilibrium. Intuitively,
a rational expectation equilibrium price is a market-clearing price such that traders will
not want to change their trades even after observing the price itself.

Rational expectations Consider the model of Section 26.2.1: an uncertain world with
possible states �, and n traders trading in a market for some good. Let vi(qi, ω)
denote the ultimate value of qi units of the good to trader i in state ω. The traders are
partially informed: let πi denote trader i’s private information, and assume that there
is a common prior distribution P . Furthermore, we assume that all traders are risk-
neutral Bayesians. To simplify the exposition, we consider the special case in which
the π̂ = �, so the combined information of all agents is sufficient to pinpoint the true
state. The equilibrium price is not a simple number as in the case of the competitive
equilibrium; instead, it is a mapping P ∗ : � → � that maps a state of the world to a
price.

Definition 26.2 A rational expectations equilibrium is a mapping P ∗ : � → �
such that in every state ω, if every trader conditions her demand (or supply) on
her private information πi as well as the price P ∗(ω), the market will clear at a
price of exactly P ∗(ω). In other words, it is a self-fulfilling correspondence from
states to prices.

This definition is subtle, and needs to be reasoned through carefully. Consider an
arbitrary nonconstant mapping P from states to prices. Then, by observing the price
P (ω), an agent who knew the mapping could immediately rule out some states of the
world: those that would have resulted in a different price. Thus, any mapping P induces
a partition πP such that anyone observing P (ω) knows πP in addition to her initial
information. Now, trader i’s effective demand curve in state ω will be given by her
expected value for the item conditioned on both the price and her private information:
ṽi(qi, ω) = E[v(qi, ω)|πi(ω), P (ω)]. Given the demand and supply curves for the n

agents, it is possible to calculate a clearing price ṽ(�). The price mapping P would
be a rational expectations equilibrium iff ṽ(ω) = P (ω) for all ω. In other words, it is
rational for the agents to believe in a price mapping P only if all agents believing in
that mapping and acting accordingly would lead to the prices predicted by P .
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Researchers have shown the existence of rational expectations equilibria in
economies with asymmetric information under fairly general conditions on the value
functions vi(·, ·). Furthermore, it has been shown that under generic conditions, these
economies admit “fully-revealing” rational expectations equilibria: price correspon-
dences P ∗(·) such that P ∗(ω1) �= P ∗(ω2) whenever ω1 �= ω2. In this case, it follows
that the price reveals the combined information of all traders, i.e., πP ∗ = π̂ , the full-
information partition. This leads to startling, and sometimes counterintuitive, conse-
quences; we discuss some of these in subsequent sections. We note, however, that the
rational expectations literature has been criticized because the definition of a rational
expectations equilibrium says nothing about how traders might learn and agree on the
equilibrium price mapping P ∗. In applying this concept, it is important to keep this in
mind, and take the price formation process into account when possible.

Efficient market hypothesis and no-trade theorems. The existence of fully reveal-
ing equilibria has led researchers to propose the “efficient market hypothesis.” The
strong form of this hypothesis states that a security’s market price fully reflects all
the information relevant to its value. The efficient market hypothesis, with its roots
in rational expectations theory, provides a theoretical foundation for why prediction
markets are likely to be effective: In a situation in which many traders have a small
amount of private information about an event, it states that the prediction market price
will reflect the combined information of all traders.

One of the most counterintuitive results of rational expectations theory is the exis-
tence of no-trade theorems. The key observation is that, in a fully revealing rational
expectations equilibrium, the price information captures every agent’s private infor-
mation. Thus, in a fully revealing equilibrium, all agents are conditioning their beliefs
on identical information, and hence have identical posterior beliefs. It follows that all
agents assign the same expected value to the security, and hence, there will not be any
trade in equilibrium. This reasoning can be extended to show that no two rational agents
will want to trade with each other even if they are not initially in equilibrium, because
the mere willingness of the other party to trade at a given price reveals information that
leads to an equilibrium. Several variants of this result, under different conditions, have
been shown.

Thus, we seem to have a paradoxical situation in which the final price reflects all
the traders’ information, but the traders would never want to trade so there is no way
for their information to get into the prices! However, the no-trade results are very
sensitive to the precise conditions specified – risk-neutrality and common knowledge
that all traders are competely rational Bayesians – and even tiny perturbations of
these conditions invalidate them. In practice, there are several reasons that can lead an
informed trader to expect a profit from trade, such as the existence of irrational traders,
traders who are trading to hedge risks, traders who trade for liquidity reasons, or a
market maker who is subsidizing the market.

26.3 Combinatorial Prediction Markets

Up to this point, we have concentrated on the economic, strategic, and statistical
properties of prediction markets. We now turn our attention to the computational
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problems that arise in the study of prediction markets. In this section, we consider
combinatorial markets. These are markets in which the state space is the product space
of a number of base events. Here, we consider state spaces generated by Boolean
events: propositions such as, “the price of gasoline is greater than $3” that may be
either true or false in the future world. Suppose that there is some finite set E of base
events, and furthermore, suppose that these events are linearly independent in the sense
that the value (true or false) of any event cannot be determined with certainty even
if the value of all other events is known. Then, the state space � is of size 2|E |, with
each state corresponding to a particular assignment of values to the individual events.
We use the symbols X1, X2, X3, . . . to denote the individual Boolean events in E .

Let Sω be a security that pays $1 if the eventual state is ω, and pays $0 otherwise.
Classic results on market equilibrium show that a market can be guaranteed to be
efficient if it is possible for a trader to express her desire for any such Sω. This does
not necessarily mean that the securities Sω have to be directly traded in the market, as
long as the market has a set of securities such that a trader could construct a portfolio
with payoff similar to any Sω she desires. Such a market is called a complete market.
Unfortunately, any complete market must have at least 2|E | securities; if the number of
base events is large, even listing all the securities may be impossible!

However, this does not mean that it is impossible to achieve efficient hedging or
information aggregation in practice. There may be many fewer than 2|E | combinations
of events that traders actually care about, or have specific information about. This
raises the following questions: (1) Is there a “natural” representation such that realistic
events, securities, and buy/sell orders can be represented succintly? (2) Given orders
in this representation, is it possible to identify and execute possible trades?

The underlying structure of the state space can be exploited through the use of
prediction markets with expressive bidding languages. We distinguish between two
forms of expressivity: combined orders and compound orders.

A combined order allows the trader to specify a collection of securities he or she
would like to trade together as a bundle, with limit prices specified for each component
security. If the trader cannot obtain all of the securities at prices equal to or better than
the specified limits, then the trader prefers not to receive any of the securities. This form
of expressivity reduces so-called execution risk, where during the course of carrying out
a planned series of transactions, the prices of some securities change, thereby reducing
or reversing the utility of the earlier trades. If there are |E | Boolean event securities,
then traders can place a combined order for any of the 2|E | possible bundles (subsets)
of the securities. When combined orders are allowed, the auctioneer problem is essen-
tially the same as in the combinatorial auction scenario (see Chapter 11). One distinction
is that, while bids in combinatorial auctions are generally considered indivisible, bids
in a securities market often can be considered divisible, thus simplifying the matching
problem. The auctioneer problem of matching combined orders in a securities market
is also called combined value trading.

A compound order allows the trader to speculate on any compound Boolean expres-
sion involving a set E of base events. If there are |E | base events, then there are 2|E |

possible combinations of outcomes of those events, and there are 22|E |
distinct subsets

of those combinations expressible using Boolean formulas. For the remainder of this
section, we will focus on compound orders, a strict superset of combined orders.
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26.3.1 Compound Prediction Markets

We now describe a concrete representation for compound order securities. The secu-
rities are based on Boolean formulas over the set of propositions E ; given a formula
φ, we have a security that pays $1 iff φ is true in the eventual state. More generally,
we allow conditional securities Sφ|ψ based on two formulas φ, ψ ; this is interpreted
as “Make a payoff according to φ, conditional on ψ being true.” In other words, the
owner of security Sφ|ψ is paid $1 if both φ and ψ are true, paid $0 if ψ is true but φ is
false, and the security is cancelled (and any money the owner paid for it is refunded)
iff ψ is false.

26.3.1.1 Orders

Agents place orders, denoted o, of the form “q units of Sφ|ψ at price p per unit,”
where q > 0 implies a buy order and q < 0 implies a sell order. We assume that agents
submitting buy (sell) orders will accept any price p∗ ≤ p (p∗ ≥ p). We distinguish
between divisible and indivisible orders. Agents submitting divisible orders will accept
quantity αq for any 0 < α ≤ 1. Agents submitting indivisible orders will accept only
exactly q units, or none.

Every order o can be translated into a payoff vector ϒ across all states ω ∈ �.
The payoff ϒ 〈ω〉 in state ω is q · 1ω∈ψ (1ω∈φ − p), where 1ω∈E is the indicator function
equaling 1 iff ω ∈ E and zero otherwise. Let the set of all orders be O = {oi} and the
set of corresponding payoff vectors be P = {ϒi}.

26.3.1.2 The Matching Problem

The auctioneer’s task, called the matching problem, is to determine which orders to
accept among all orders o ∈ O. Let αi be the fraction of order oi accepted by the
auctioneer (in the indivisible case, αi must be either 0 or 1; in the divisible case, αi can
range from 0 to 1). If αi = 0, then order oi is considered rejected and no transactions
take place concerning this order. For accepted orders (αi > 0), the auctioneer receives
the money lost by bidders and pays out the money won by bidders, so the auctioneer’s
payoff vector (or surplus vector) is

ϒauc =
∑

ϒi∈P
−αiϒi.

Assume that the auctioneer wants to choose a set of orders so that it is guaranteed
not to lose any money in any future state, but that the auctioneer does not necessarily
insist on obtaining a positive benefit from the transaction (i.e., the auctioneer is content
to break even).

Definition 26.3 (Indivisible matching problem) Given a set of orders O,
does there exist αi ∈ {0, 1} with at least one αi = 1 such that ∀ω, ϒ

〈ω〉
auc ≥ 0? In

other words, does there exist a nonempty subset of orders that the auctioneer can
accept without risk?
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Example 26.4 (Indivisible order matching) Suppose |E | = 2. Consider an
order to buy one unit of SX1X2 at price 0.4 and an order to sell one unit of SX1 at
price 0.3. The corresponding payoff vectors are

ϒ1 = 〈
ϒ

〈X1X2〉
1 , ϒ

〈X1X̄2〉
1 , ϒ

〈X̄1X2〉
1 , ϒ

〈X̄1X̄2〉
1

〉

= 〈0.6, −0.4, −0.4, −0.4〉
ϒ2 = 〈−0.7, −0.7, 0.3, 0.3〉

The auctioneer’s payoff vector (the negative of the component-wise sum of the
above two vectors) is

ϒauc = −ϒ1 − ϒ2 = 〈0.1, 1.1, 0.1, 0.1〉.
Since all components are nonnegative, the two orders match. The auctioneer can
process both orders, leaving a surplus of $0.1 in cash and one unit of SX1X̄2

in
securities.

Now consider the divisible case, where order can be partially filled.

Definition 26.5 (Divisible matching problem) Given a set of orders O, does
there exist αi ∈ [0, 1] with at least one αi > 0 such that ∀ω, ϒ

〈ω〉
auc ≥ 0?

The matching problems defined above are decision problems: the task is only to show
the existence or nonexistence of a match. We could additionally seek to maximize some
objective function – like trading volume or auctioneer expected profit – to choose the
best among all possible matches. Here, we restrict our attention to the decision problem
formulations.

26.3.1.3 The Computational Complexity of Matching

In this section we examine the computational complexity of the auctioneer’s matching
problem. Here n is the size of the problem’s input, including descriptions of all the
buy and sell orders. We also assume that n bounds the number of base securities. We
consider four cases based on two parameters:

(i) Whether to allow divisible or indivisible orders.
(ii) The number of securities. We consider two possibilities: (a) O(log n) base securi-

ties yielding a polynomial number of states, or (b) 	(n) base securities yielding an
exponential number of states.

Theorem 26.6 The matching problem for divisible orders is

(i) computable in polynomial-time for O(log n) base securities.

(ii) co-NP-complete for unlimited securities.

proof Small number of securities with divisible orders. We can build a
linear program based on Definition 26.5. We have variables αi . For each i, we
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have 0 ≤ αi ≤ 1. and for each state ω in � we have the constraint

Payment(ω) =
∑

i

−αiϒ
〈ω〉
i ≥ 0.

Given these constraints, we maximize
∑

i αi . A set of orders has a matching
exactly when max

∑
i αi > 0. With O(log n) base securities, we can solve this

linear program in polynomial time. Note, however, that this approach may not
find matchings that have precisely zero surplus.
Large number of securities with divisible orders. With unlimited base securi-
ties, the linear program given in Section 26.3.1.3 has an exponential number of
constraint equations. Each constraint is short to describe and easily computable
given ω. Let m ≤ n be the total number of buy and sell orders. By the theory of
linear programming, an upper bound on the objective function can be forced by a
collection of m + 1 constraints. So if no matching exists there must exist m + 1
constraints that force all the αi to zero. In nondeterministic polynomial-time we
can guess these constraints and solve the reduced linear program. This shows that
matching is in co-NP.

To show co-NP-completeness, we reduce the NP-complete problem of Boolean
formula satisfiability to the nonexistence of a matching. Fix a formula φ. Let the
base securities be the variables of φ and consider the single security Sφ with a buy
order of 0.5. If the formula φ is satisfiable, then there is some state with payoff
0.5 (auctioneer payoff −0.5) and no fractional unit of security Sφ is a matching.
If the formula φ is not satisfiable then every state has an auctioneer’s payoff of
0.5 and a single unit of Sφ is a matching.

For indivisible orders, the matching problem turns out to be even harder to solve.
We state the following result; because of space restrictions, we do not reproduce the
proof here.

Theorem 26.7 The matching problem for indivisible orders is

(i) NP-complete for O(log n) base securities.

(ii) 

p

2 -complete for unlimited securities.

26.3.2 Compact Prediction Markets

Compound orders are very general: traders can submit orders for any Boolean expres-
sion of base events. Computational limits aside, a market system supporting compound
orders effectively implements a complete securities market, as defined above, mean-
ing that all possible mutually agreeable transactions can proceed, supporting a Pareto
optimal and economically efficient allocation of securities.

Of course, computational limits are a real practical barrier; matching compound
orders can easily become intractable. By limiting the full expressivity of compound
orders, computational complexity can be reduced.

One natural restriction takes advantage of any (conditional) independence relation-
ships among base events. Suppose that the statistical dependency structure of the base
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events is encoded as a Bayesian network. That is, the joint probability distribution over
the base events can be factored as follows:

Pr(X1X2 . . . X|E |) =
|E |∏

k=1

Pr(Xk | pa(Xk)),

where pa(Xk) is a set of base events with index less than k called Xk’s parents. The
factorization can be depicted as a directed acyclic graph with nodes representing base
events and edges from each event in pa(Xk) to Xk representing direct conditional
dependencies.

Now restrict trading to conditional securities of the form SXj |pa(Xj ), one for each
conditional probability Pr(Xj |pa(Xj )) in the Bayesian network. Each event Xj with
|pa(Xj )| parents corresponds to 2|pa(Xj )| securities, one for each possible combination
of outcomes of events in pa(Xj ). A securities market structured in this way contains
O(|E | · 2max |pa(Xj )|) securities, which can be considerably fewer than the 2|E | securities
required for a complete market, if max |pa(Xj )| � |E |. Call such a market a BN-
structured market.

Although the need for 2|E | securities cannot be relaxed if one wants to guarantee
completeness in all circumstances, there are some restrictive conditions under which
a smaller BN-structured securities market may be operationally complete, meaning
that its equilibrium is Pareto optimal with respect to the traders involved. In particular,
if all traders’ risk-neutral independencies agree with the independencies encoded in
the market structure, then the market is operationally complete. For collections of
agents all with constant absolute risk aversion (negative exponential utility for money),
agreement on Markov independencies is sufficient for operational completeness.

26.4 Automated Market Makers

The standard way to organize a market is as a continuous double auction, in which
traders arrive asynchronously and place their orders, and a trade takes place if a buyer
quotes a higher price than a seller who is present at the same time. In a prediction
market organized in this way, a speculator with private information about the security
would have to submit her order and wait for another trader to place a matching order.

There are two problems with this scenario. First, the informed trader may not
be willing to wait indefinitely for a partner to trade with. If there are few potential
traders, they may never even enter the market because they do not expect to find a
trading partner. This is the thin market problem: a “chicken and egg” scenario where
few traders care to participate because other traders are scarce, leading to a potential
breakdown of the market. The thin market problem can be especially severe in a
combinatorial market because each trader’s attention is divided among an exponential
number of choices, making the likelihood of a match between traders seem very remote.
Second, an informed trader may not want to reveal her willingness to trade (at a given
price), because this may tip off other traders, and may prevent her from making a
profit. This effect is related to the no-trade theorems discussed in Section 26.2.2.3,
and arises because traders are essentially playing a zero-sum game with each other.
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Both problems can reduce the incentives for traders to participate, thus reducing the
informativeness of prices.

An alternative to using a double auction mechanism is for the market to include a
market maker. A market maker is an agent who is always ready to trade. Typically, a
market maker posts bid and ask prices (which may be identical); then a seller who is
willing to sell at the bid price (or a buyer who is willing to pay the ask price) can trade
with the market maker. The market maker may later resell the securities it bought to a
buyer. In this way, the market maker can effectively engineer a trade between a buyer
and a seller who arrive at different times and do not wait.

Of course, one side effect of having a market maker is that the market operator could
potentially make a loss. This is not necessarily a negative property; in essence, it is a
way of injecting subsidies into the market. The no-trade theorems no longer apply to
a market with subsidies, so informed speculators can rationally expect to profit from
their trade. However, it is important that the loss be predictable or bounded. To achieve
this, the bid and ask prices must be adjusted in a systematic way after every trade; the
new prices are computed by an automated market maker.

An ideal automated market maker should satisfy three properties: (1) it should run
a predictable or bounded loss; (2) informed traders should have an incentive to trade
whenever their information would change the price; and (3) after any trade, computing
the new prices should be a tractable problem. In this section, we describe two new
microstructures for prediction markets that effectively function as automated market
makers, and appear to have all these properties.

26.4.1 Market Scoring Rules

Hanson shows how any proper scoring rule, or payment scheme designed to elicit
truthful reporting of probabilities, can be converted into an automated market maker.
The market maker can be thought of as a sequential shared version of the scoring
rule, as we describe later. First, we describe the market maker algorithm in a more
conventional light.

Suppose that the market contains |�| mutually exclusive and exhaustive securities.
Let qj be the total quantity of security j held by all traders combined, and let �q be the
vector of all quantities held. The market maker utilizes a cost function C(�q) that records
the total amount of money traders have spent as a function of the total number of shares
held of each security. A trader who wants to purchase δ shares of security j must pay
C(q1, . . . , qj + δ, . . . , q|�|) − C(�q) dollars. More generally, a trader who wants to buy
or sell any bundle of securities (i.e., any combined order or compound order, as defined
in Section 26.3) such that the total number of outstanding shares changes from �qold

to �qnew must pay C(�qnew) − C(�qold) dollars. Negative quantities encode sell orders and
negative “payments” encode sale proceeds earned by the trader. At any time, the going
price of security j is ∂C/∂qj , the cost per share for purchasing an infinitesimal quantity.
The full cost for purchasing any finite quantity is the integral of price evaluated from
�qold to �qnew, or C(�qnew) − C(�qold). Once the true outcome becomes known, the market
maker pays $1 per share to traders holding the winning security.
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Deriving the cost function associated with a particular scoring rule is straightforward
if tedious. The cost function corresponding to the logarithmic scoring rule is

C(�q) = b ln

⎛

⎝
∑

j

eqj /b

⎞

⎠

and the price function is ∂C/∂qj = eqj /b/
∑

k eqk/b. The free parameter b controls both
the market maker’s risk of loss and the effective liquidity of the market. One can show
that the maximum possible loss incurred by the maker maker is b ln |�|. But a larger
b also means that more shares can be purchased at or near the current price without
driving up the price too much, a measure of market liquidity and depth. The logarithmic
scoring rule market maker has been implemented in several real-world settings with
success, including at InklingMarkets, Net Exchange, and Microsoft.

The cost function corresponding to the quadratic scoring rule is

C(�q) =
∑

j qj

|�| +
∑

j q2
j

4b
− (

∑
j qj )2

4b|�| − b

|�| .

The quadratic scoring rule market maker is likely not of much practical interest. The
market maker allows traders only to buy a small fixed number of shares of any security.
Moreover, as soon as one upper limit is reached on any security, the market maker
cannot accept buy orders for other securities. In contrast, the logarithmic scoring rule
market maker can accept arbitrarily large quantities of buy or sell orders.

As mentioned, a market scoring rule market maker can be viewed as a sequential
shared version of a scoring rule. Conceptually, the market maker begins by setting
prices equal to an initial probability estimate. The first trader to arrive agrees to (1)
pay the market maker the scoring rule payment associated with the market maker’s
probability estimate and (2) receive the scoring rule payment associated with the
trader’s own probability estimate. Myopically, this modified scoring rule still incents
the trader to reveal her true probability estimate. The final trader pays the scoring
rule payment owed to the second-to-last trader and receives a scoring rule payment
from the market maker. The market maker’s loss is bounded by the maximum possible
payment to the final trader minus the payment from the first trader. One can show that
the more conventional cost function formulation of the market maker is equivalent to
the sequential shared scoring rule formulation.

26.4.2 Dynamic Parimutuel Markets

A parimutuel game is a wagering game where players compete to earn as large a portion
as possible of the total pool of money wagered by all players. Again consider a set � of
mutually exclusive and exhaustive outcomes. Players wagers money on the outcome(s)
of their choice. When the true outcome is revealed, players who wagered on the correct
outcome split the total pool of money in proportion to the amount they bet. In a sense,
the cost of purchasing an equal share of the winnings associated with any outcome
is always a constant, say $1. A dynamic parimutuel market is a dynamic-cost variant
of the parimutuel wagering game. As before, traders compete for a share of the total
money wagered, however the cost of a single share varies dynamically according to
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a cost function, thus allowing traders to sell their shares prior to the determination of
the outcome for profits or losses. From a trader’s perpective, the mechanism acts as a
market maker.

A particularly natural cost function is the share-ratio cost function, which equates
the ratio of prices of any two outcomes with the ratio of number of shares outstanding
for the two outcomes. The share-ratio cost function is

C(�q) = κ

√∑

j

q2
j ,

where κ is a free parameter. The corresponding price function is pj = κqj/

√∑
k q2

k .
This cost function is the unique dynamic parimutuel cost function satisfying the ratio
constraint pj/pk = qj/qk for all j and k. Setting κ = 1 yields a natural version where
the price of each outcome is always less than 1, and the payoff per share of each
outcome is always greater than 1. The share-ratio cost function is arbitrage-free and
ensures that wagers on the correct outcome can never lose money. The market maker
initiates the game with an allocation of shares �q and a corresponding C(�q) dollars,
reflecting the market maker’s maximum risk of loss.

Besides the different form of the cost function, the main difference between a market
scoring rule market maker and a dynamic pari-mutuel market maker is that the former
pays a fixed $1 per share to winning shareholders while the latter pays an equal portion
of the total amount wagered to winning shareholders. Because of the added uncertainty
surrounding the payoff per share, trading strategies in a dynamic parimutuel market
are more complicated, and the interpretation of the price as a forecast is less direct. On
the other hand, as a gambling game, the added uncertainty may appeal to risk seeking
traders.

26.5 Distributed Computation through Markets

Sections 26.3 and 26.4 concerned algorithmic components of the operation of a pre-
diction market. In this section, we turn that viewpoint inside out, and study the system
of market and traders as a computational device (that is perhaps a part of a larger com-
putation)! We construct and analyze a simple model of a prediction market in order to
gain insight into two fundamental properties of any computational device: what can it
compute? and, how fast does the computation run?

Where is this computation taking place? The traders use their private information
to attempt to make profitable trades. Importantly, they observe the market clearing
price (or the actual sequence of trades), and update their beliefs about the security
value. The computation of the market as a whole occurs through the traders’ belief-
updating processes; this is where a trader takes a signal (the market price) that reflects
some information about other traders, and combines it logically with her own private
information.

The process by which the market prices adjust is important for another reason:
Recall from Section 26.2.2.3 that the rational expectations equilibrium definition does
not address the issue of how traders reach the equilibrium price correspondence. We
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shall see that this can be problematic: With a plausible belief-updating process, the
market prices may sometimes get stuck at a noninformative equilibrium, even though a
fully revealing equilibrium exists. Thus, we need a better understanding of the dynamics
of the price adjustment process. The following model provides some insight.

26.5.1 Boolean Market Model

We model a very simple class of elementary computation problems – computing a
Boolean function – and study what can be computed with a single security. Initially,
suppose that there are n traders, each with a single bit xi of private information; we
use x to denote the vector (x1, . . . , xn). This model can be translated to a partition
model as described in Section 26.2.1: The state space is � = {0, 1}n, and each agent i

initially has a partition πi = {{x ∈ �|xi = 0}, {x ∈ �|xi = 1}} with two components.
We are interested in learning the value of a Boolean function f : {0, 1}n → {0, 1} of
the combined information x. To do this, we set up a market in a security F that will
pay $1 if f (x) is ultimately revealed to be 1, and $0 otherwise. The form of f (the
description of the security) is common knowledge among agents. We sometimes refer
to the xi as the input bits. At some time in the future after trading is completed, the
true value of f (x) is revealed. Note that the traders’ combined information is enough
to determine the exact value of f (x); thus, if the market is truly efficient, we expect its
equilibrium trading price to be equal to f (x).

To have a model that permits analysis, we next need to specify how the market prices
are formed, and how the agents bid in the market and react to market information.

26.5.2 Bid Format and Price Formation

Continuous double auctions are complex systems, and there is no standard way to
analytically model the price formation process; we use the following linear model that
loosely captures the nature of the market, and permits analysis. The market proceeds
in synchronous rounds. In each round, each agent i submits a bid bi and a quantity
qi . The semantics are that agent i is supplying a quantity qi of the security and an
amount bi of money to be traded in the market. For simplicity, we assume that there
are no restrictions on credit or short sales, and so an agent’s trade is not constrained
by her possessions. The market clears in each round by settling at a single price that
balances the trade in that round: The clearing price is p = ∑

i bi/
∑

i qi . At the end of
the round, agent i holds a quantity q ′

i proportional to the money she bid: q ′
i = bi/p. In

addition, she is left with an amount of money b′
i that reflects her net trade at price p:

b′
i = bi − p(q ′

i − qi) = pqi . Note that agent i’s net trade in the security is a purchase
if p < bi/qi and a sale if p > bi/qi .

After each round, the clearing price p is publicly revealed. Agents then revise
their beliefs according to any information garnered from the new price. The next
round proceeds as the previous. The process continues until an equilibrium is reached,
meaning that prices and bids do not change from one round to the next.

Here, we make a further simplifying restriction on the trading in each round: We
assume that qi = 1 for each agent i. This serves two analytical functions: First, it
forces trade to occur. Our model has only rational, risk-neutral, informed traders, and



P1: SBT

9780521872829main CUNY1061-Nisan 0 521 87282 0 July 5, 2007 14:43

distributed computation through markets 667

the classic no-trade results would apply. As we have seen, there are several reasons
why rational traders would want to trade in practice (subsidies, insurance traders,
etc.). This forced trade assumption allows us to capture this practical fact without the
complications of explicitly modeling these reasons. Second, the fact that agents know
the volume of other agents’ trades improves their ability to learn from prices. This
perhaps gives our agents too much power; but as we shall see, there are still situations
in which the market does not converge to the correct value.

26.5.3 Agent Behavior

We assume that agents are risk-neutral, myopic,3 and bid truthfully: Each agent in each
round bids his or her current valuation of the security, which is that agent’s estimation
of the expected payoff of the security. Expectations are computed according to each
agent’s probability distribution. We assume that there is a common prior probability
distribution P over values of x shared by all agents; the agents use their private
information and the observed prices to update their beliefs via Bayes’ rule. We also
assume that it is common knowledge that all the agents behave in the specified manner.

Example 26.8 Consider a market with two agents, who have private bits x1

and x2, respectively. Furthermore, assume that the prior probability distribution is
uniform, so that each of the four possible values for x will have a prior probability
of 1

4 . Now, we introduce a security F based on the OR function f (x) = x1 ∨ x2;
that is, F eventually pays $1 if f (x) is 1. Suppose that agent 1 observed x1 = 0.
Then, conditioned on this information, agent 1 believes P ((x1, x2) = (0, 0)) =
P ((x1, x2) = (0, 1)) = 1

2 . Then agent 1’s initial expectation of the value of F is
0.5; hence, in our model, she would bid b1 = 0.5 in the first round of trading. On
the other hand, suppose that agent 2 observed x2 = 1. Then, her posterior beliefs
would be P ((x1, x2) = (0, 1)) = P ((x1, x2) = (1, 1)) = 1

2 . She would know for
certain that f is 1, and would bid b2 = 1. The clearing price of the market after
the first round would thus be 0.75.

26.5.4 Equilibrium Price Characterization

We now turn to analyzing the equilibrium trading price in the market. Our analysis
builds on powerful results from the economic literature on common knowledge of
aggregates.

Recall that there is a set of possible states �, together with a common prior proba-
bility distribution P . As trading proceeds, some possible states can be logically ruled
out, but the relative likelihoods among the remaining states are fully determined by the
prior P . So the common knowledge after any stage is completely described by the set
of states that an external observer – with no information beyond the sequence of prices
observed – considers possible (along with the prior). Similarly, the knowledge of agent
i at any point is also completely described by the set of states she considers possible.

3 Myopic behavior means that agents treat each round as if it were the final round: They do not reason about how
their bids may affect the bids of other agents in future rounds.
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We use the notation Sr to denote the common-knowledge possibility set after round r ,
and Sr

i to denote the set of states that agent i considers possible after round r .
Initially, the set of states considered possible by an external observer is the set

S0 = �. However, each agent i also knows the value of her bit xi ; thus, her knowledge
set S0

i is the set {y ∈ �|yi = xi}. Agent i’s first-round bid is her conditional expectation
of the event f (x) = 1 given that x ∈ S0

i . All the agents’ bids are processed, and the
clearing price p1 is announced. From his knowledge of the prior and the information
structure, the external observer can determine the function price1(x) that relates the
first round price to the true state x. Thus, he can rule out any vector x that would have
resulted in a different clearing price.

Thus, the common knowledge after round 1 is the set S1 = {y ∈ S0| price1(y) = p1}.
Agent i knows the common knowledge and, in addition, knows the value of bit xi .
Hence, after every round r , the knowledge of agent i is given by Sr

i = {y ∈ Sr |yi = xi}.
Note that, because knowledge can only improve over time, we must always have
Sr

i ⊆ Sr−1
i and Sr ⊆ Sr−1. Thus, after a finite number of rounds, we must reach an

equilibrium after which no player learns any further information. We use S∞ to denote
the common knowledge at this point, and S∞

i to denote agent i’s knowledge at this
point. Let p∞ denote the clearing price at equilibrium.

We now state (without proof) a result that follows immediately from known results
on common knowledge of aggregates:

Theorem 26.9 In the Boolean market, the following conditions must hold at
equilibrium:

P (f (y) = 1 | y ∈ S∞) = p∞ (26.1)

∀i P
(
f (y) = 1 | y ∈ S∞

i

) = p∞ (26.2)

Informally, Theorem 26.9 tells us that, at equilibrium, all agents must have exactly
the same expectation of the value of the security, and that this must agree with the ex-
pectation of an uninformed observer. Note that they may still have differing knowledge
sets, as long as conditioning on their respective knowledge sets yields the same expec-
tation. However, reaching agreement is not sufficient for the purposes of information
aggregation. We also want the price to reveal the actual value of f (x). The following
example shows that it is possible that the equilibrium price p∞ of the security F will
not be either 0 or 1, and so we cannot infer the value of f (x) from it.

Example 26.10 Consider two agents 1 and 2 with private input bits x1 and
x2, respectively. Suppose that the prior probability distribution is uniform, i.e.,
x = (x1, x2) takes the values (0, 0), (0, 1), (1, 0), and (1, 1) each with probability
1
4 . Now, suppose that the aggregate function we want to compute is the XOR
function, f (x) = x1 ⊕ x2. To this end, we design a market to trade in a Boolean
security F , which will eventually payoff $1 iff x1 ⊕ x2 = 1.

If agent 1 observes x1 = 1, she estimates the expected value of F to be the
probability that x2 = 0 (given x1 = 1), which is 1

2 . If she observes x1 = 0, her
expectation is the conditional probability that x2 = 1, which is also 1

2 . Thus, in
either case, agent 1 will bid 0.5 for F in the first round. Similarly, agent 2 will
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also always bid 0.5 in the first round. Hence, the first round of trading ends with
a clearing price of 0.5. From this, agent 2 can infer that agent 1 bid 0.5, but this
gives her no information about the value of x1 – it is still equally likely to be
0 or 1. Agent 1 also gains no information from the first round of trading, and
hence neither agent changes her bid in the following rounds. Thus, the market
reaches equilibrium at this point. As predicted by Theorem 26.9, both agents have
the same conditional expectation (0.5) at equilibrium. However, the equilibrium
price of the security F does not reveal the value of f (x1, x2), even though the
combination of agents’ information is enough to determine it precisely.

26.5.5 Characterizing Computable Aggregates

We now give a necessary and sufficient characterization of the class of functions f

such that, for any prior distribution on x, the equilibrium price of F will reveal the true
value of f . We show that this is exactly the class of weighted threshold functions:

Definition 26.11 A function f : {0, 1}n → {0, 1} is a weighted threshold func-
tion iff there are real constants w0, w1, w2, . . . , wn such that

f (x) = 1 iff w0 +
n∑

i=1

wixi ≥ 1

We now state the following results; because of space restrictions, we do not include
the proof. The OR and XOR examples (Examples 26.8 and 26.10) give some insight
into these results.

Theorem 26.12 If f is a weighted threshold function, then, for any prior prob-
ability distribution P , the equilibrium price of F is equal to f (x).

Theorem 26.13 Suppose f : {0, 1}n → {0, 1} cannot be expressed as a
weighted threshold function. Then there exists a prior distribution P for which
the price of the security F does not converge to the value of f (x).

26.5.6 Convergence Time

The model also enables analysis of the number of rounds it takes for the market to
converge. We state (but do not prove) the results here.

Theorem 26.14 Let f be a weighted threshold function with n inputs, and let
P be an arbitrary prior probability distribution. Then, after at most n rounds of
trading, the price reaches its equilibrium value p∞ = f (x).

Theorem 26.15 There is a function Cn with 2n inputs and a prior distribution
Pn such that, in the worst case, the market takes n rounds to reveal the value of
Cn(·).
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26.6 Open Questions

We conclude with some open questions and future work.

Combinatorial Prediction Markets

� Section 26.3 discusses combinatorial prediction markets from the auctioneer’s perspec-
tive. The bidder’s perspective is also interesting to examine. How should bidders choose
boolean formulas φ, perhaps subject to constraints or penalties on the number or com-
plexity of bids? How should bidders choose quantities and prices?

� Are there less expressive bidding languages that admit polynomial matching algorithms
yet are still practically useful and interesting?

� Although exact matching in general is intractable, are there good heuristics that achieve
matches in many cases, or approximate a matching? In particular, is there a practically
useful logical reduction algorithm for finding matches?

� We can study permutation combinatorics instead of Boolean combinatorics. In this case,
the state space � consists of all possible orderings of a set of statistics, say finish times
in a horse race. Then a high-level bidding language might allow wagers on events like
“X1 will win,” “X1 will finish in the top 3,” “X1 will beat X2,” etc. Are there natural
bidding languages with tractable matching problems in this setting?

� Can the auctioneer share the surplus partially or fully with the traders? What are the
incentive properties of the resulting mechanisms?

� What is the complexity of finding a match between a single new order and a set of
old orders known to have no matches among them? The objective function would be
to satisfy as much of the new order as possible, giving the advantage of any price
differences to the new order. (This is the standard continuous double auction rule.)

� We may consider a market to be in computational equilibrium if no computationally
bounded player can find a strategy that increases utility. Can a market achieve a compu-
tational equilibrium that is not a true equilibrium? Under what circumstances?

Automated Market Makers

� For every bidding language that admits a polynomial time matching algorithm as defined
in Section 26.3, does there exist a corresponding polynomial time market scoring rule
market maker algorithm?

� The market makers of Section 26.4 can be considered as simple online algorithms (see
Chapter 16). Orders arrive one at a time and the market maker must decide to (partially)
accept or reject the order under a constraint of bounded worst-case loss. Are there other
online algorithms that can accept more orders for the same worst-case bound on loss?

Distributed Computation Through Markets

� The market model in Section 26.5 assumes that the clearing price is known with unlimited
precision. Furthermore, the model assumes that none of the traders are misinformed or
irrational. What aggregates can be computed even in the presence of noisy prices and
traders?
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� If the agents have computed the value of the function and a small number of input bits
are switched, can the new value of the function be computed incrementally and quickly?

� In the model presented, distributed information is aggregated through a centralized mar-
ket computation. Can we find a good distributed-computational model of a decentralized
market?

� What is the complexity of the computations that agents must do to update their beliefs
after each round?

� The model in Section 26.5 directly assumes that agents bid truthfully. Is there a tractable
model that assumes only rationality and solves for the resulting game-theoretic solution
strategy?

� The negative results in Section 26.5 (Theorems 26.13 and 26.15) examine worst-case
scenarios, and thus involve very specific prior probability distributions and initial infor-
mation states. On the other hand, simulations seem to suggest that almost every threshold
function’s expected convergence time is near constant, where expectation is taken over
the common prior. Can we prove results about average-case convergence?

� Nonthreshold functions can be implemented by combining two or more threshold func-
tions. What is the minimum number of threshold securities required to implement a given
function? Are there ways to configure securities to speed up convergence to equilibrium?

26.7 Bibliographic Notes

This section surveys some of the most directly relevant related work; a more extensive
bibliography will be made available on the authors’ home pages. We also point readers
to excellent survey articles on prediction markets by Tziralis and Tatsiopoulos (2006),
Wolfers and Zitzewitz (2004, in press), and Berg and Rietz (2003).

A number of studies investigate forecast accuracy and trader behavior on the
Iowa Electronic Market, one of the longest-running active prediction markets. Berg
et al. (2001) surveys this work. Other empirical studies examine markets on Trade-
Sports.com, an Irish betting exchange (Wolfers and Zitzewitz, 2006; Wolfers et al.,
2007; Tetlock, 2004, 2006). Perhaps surprisingly, even play-money market games per-
form well compared to experts and real-money markets (Chen et al., 2005; Pennock
et al., 2001a, 2001b; Servan-Schreiber et al., 2004; Spann and Skiera, 2003; Mangold
et al., 2005). The field tests at Hewlett Packard were conducted by Chen and Plott
(2002) and Plott (2000). Sunder (1995) reviews a number of laboratory experiments
involving prediction markets.

A common concern is that prediction market prices may be manipulated by wealthy
traders with ulterior motives. Rhode and Strumpf (2006) analyze manipulation attempts
in real markets and find that the effects of manipulations are typically minimal and
short lived. Hanson et al. (2006) find that markets appear robust to manipulation in a
laboratory setting.

The theory of rational expectations was introduced by Muth (1961) and further
developed by Lucas (1972). The article by Grossman (1981) is a good introductory
survey. No-trade theorems (Milgrom and Stokey, 1982) have their roots in the theory of
common knowledge (Aumann, 1976). Several authors discuss a procedural explanation
of rational expectations, showing that repeated announcement of an aggregate statistic
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of the agents’ beliefs will drive the agents to a consensus, if they begin with common
priors (Hanson, 1998; Mckelvey and Page, 1986, 1990; Nielsen et al., 1990). The
oft-cited efficient market hypothesis (Fama, 1970) is rooted in rational expectations
theory.

The analysis of combinatorial prediction markets in Section 1.3 follows Fortnow
et al. (2005). Chen et al. (2007) conduct an analogous study of permutation conbina-
torics. Bossaerts et al. (2002) introduce the combined value trading framework, pro-
viding algorithms for clearing prediction markets when combined orders are allowed.

The description in Section 26.3.2 of compact prediction markets that take advantage
of (conditional) independence among events is based on work by Pennock and Wellman
(2000, 2005).

Market scoring rules were introduced by Hanson (2003, 2006). Hanson describes
how the market scoring rule market maker is especially well suited for combina-
torial prediction markets, and discusses some of the associated computational chal-
lenges. Scoring rules have long been used to measure forecast accuracy (Savage, 1971;
Winkler and Murphy, 1968). Dynamic parimutuel markets were introduced by Pennock
(2004).

Section 26.5 follows the work of Feigenbaum et al. (2005). Chen et al. (2006)
examine an extended model where aggregate uncertainty remains in equilibrium.
Theorem 26.9 follows from a result due to McKelvey and Page; see Nielsen et al.
(1990) for more details. The market model is based on a model due to Shapley and
Shubik (1977). Ronen and Wahrmann (2005) investigate a slightly different model
of prediction games, in which a mechanism designer seeks to compute a function of
agents’ information, but agents incur a cost to access their own information.
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Exercises

26.1 Describe how the market scoring rule market maker of Section 26.5 can be ex-
tended to handle limit orders of the form “buy at most q units of Sφ at price less
than or equal to p.” For simplicity, assume that partially filled limit orders do not
remain active in the system.

26.2 A straightforward implementation of a combinatorial market maker, where � =
2||E ||, requires exponential space to explicitly maintain the vector �q, the number
of shares outstanding of each of the 2||E || possible outcomes (states). Derive a
polynomial-space version of a combinatorial logarithmic market scoring rule mar-
ket maker, where the input is the list of previously accepted orders and the new
order and the output is C (�q). Orders can be either combined orders or compound
orders, as defined in Section 26.3.

26.3 Define the conditional cost function for the logarithmic market scoring rule as
Cψ (�q) = b ln(

∑
j :ω j ∈ψ eqj /b): the same cost function as before but summed only

over states in ψ . The conditional cost function can be used to price conditional
securities. The cost to buy δ shares of Sφ|ψ is Cψ (�q + δ · 1φ ) − Cψ (�q). Also, by Bayes’s
Rule, we know that the instantaneous price of Sφ|ψ equals the price of Sφ∧ψ divided
by the price of Sψ .

(a) Verify that the price of Sφ|ψ defined in this way integrated from 0 to δ equals
Cψ (�q + δ · 1φ ) - Cψ (�q).
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(b) After a trader purchases δ shares of Sφ|ψ , what is the new quantity vector �qnew?
(Hint: it is not �qold + δ · 1φ .)

26.4 Consider the two-agent “OR” market of Example 26.8. Suppose that X 1 = 0 and
X 2 = 1. Prove that bidding truthfully is not a Nash equilibrium. To do so, it suffices
to show that if bidder 1 bids truthfully, then bidder 2’s optimal bid is not truthful.


